
CS 4530 Final Project: Voting in Conversation Areas
Group 2J: William Cunningham, Thomas Nguyen, Ashwin Sambasivam, Vishal Ramesh

Our Feature - Voting
We created a voting abstraction that allows players to initiate

votes which can change properties of conversation areas. We felt that

players in a conversation area should have more autonomy over their

conversations. So, we implemented features allowing users to

democratically propose and vote on changes to a conversation area’s

topic and privacy settings.

We also created a custom voting feature that allows a player to

ask any question to all other players in the conversation, without

having a side effect on the state of the server itself.

We hope our feature will promote democratic consensus building

through sparking additional conversation and debate within Covey

Town.

Message tooltip that appears in Dropdown to select the

an active conversation area type of poll

D

Poll Creation Modal Voting Window Modal Post-Voting Window

Demo and Source
Our demo is available at https://merry-chebakia-c57312.netlify.app/ ,

and our source code is available at

https://github.com/neu-cs4530-s22/team-project-group-2j.

Our Technology Stack and Design
We implemented the vote manager object which held a reference

to a conversation area. Therefore, there is a one-to-one relation

where each conversation area may only have one active vote manager

at a time. When a player enters an active conversation area, current

occupants see a tooltip message inviting them to start a vote. If the

player decides to click the keyboard shortcut ‘p’, a React/Chakra input

modal appears where the player can select which type of vote they

want to start. After submitting the form, a vote manager is initialized

via an api call and tracked by the backend CoveyTownController. This

is then synced to each client using socket-io. All current occupants of

the conversation area then see a modal pop up where they can cast

their vote. This calls an api on the backend where the votes are

tracked via its vote manager. After the vote timeout ends, sockets

notify the frontend that the vote is over and all the votes are

aggregated and reported to each player. Players then see any side

effects of the vote if possible, such as the conversation topic changing.

Future Work
One of the elements of this project we are most proud of is our

reusable voting abstraction. While we originally set out to create polls

that just change the conversation area topic, we now see that there

are many other pieces of the game we could change through voting.

For example, we could easily add the ability to vote on other aspects

of a conversation area, such as its list of occupants. We could also add

the ability to vote on polls which would have a more dramatic visual

effect on the server, such as changing the color of a conversation area.

Another aspect we would like to build upon is the existing voting

options other than just simply yes/no options. We foresee expanding

this to include more dynamic voting options where the creator of the

vote/poll can choose the number of voting options as well as

customize the option itself. In conjunction with this, it could be

interesting to allow the configuration of side-effects on the frontend.

https://merry-chebakia-c57312.netlify.app/
https://github.com/neu-cs4530-s22/team-project-group-2j

